An Efficient Particle Filter-based Tracking Method Using Graphics Processing Unit (GPU)

نویسنده

  • Peihua Li
چکیده

Particle filter has been proven very robust in handling non-linear and non-Gaussian problems and has been widely used in the area of object tracking. One of the main problems in particle filter-based object tracking is, however, its high computational cost induced by the most time-consuming stage of measurement model computation. This paper makes progress in resolving the problem by proposing an efficient particle filter-based tracking algorithm using color information. First, a compact color cooccurrence histogram is presented, which considers both spatial and color information and can effectively represent color distribution with a very small number of histogram bins. The paper also introduces integral images by which the cooccurrence histogram can be obtained with simple array reference operations. However, the construction of the integral images on the CPU may be computationally expensive. Hence, this paper develops parallel algorithms on a desktop Graphics Processing Unit (GPU), which accomplishes the integral images construction and cooccurrence histogram computation after bin index determination. The resulting algorithm is quite efficient and has better performance than the traditional histogram-based tracking algorithm. The tracking time of the proposed algorithm increases insignificantly with the growth of particle number, and it remains consistent among varying image sequences and stable throughout all frames in the same image sequence due to its irrelevance to object size. Experiments in diverse image sequences validate our conclusions. P. Li School of Computer Science and Technology, Heilongjiang University, Harbin, 150080, China Tel.: +86-451-86608809 E-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

Particle Filtering: The Need for Speed

The particle filter (PF) has during the last decade been proposed for a wide range of localization and tracking applications. There is a general need in such embedded system to have a platform for efficient and scalable implementation of the PF. One such platform is the graphics processing unit (GPU), originally aimed to be used for fast rendering of graphics. To achieve this, GPUs are equipped...

متن کامل

GPU-Accelerated Object Tracking Using Particle Filtering and Appearance-Adaptive Models

In this work we present an object tracking algorithm running on GPU. The tracking is achieved by a particle filter using appearance-adaptive models. The main focus of our work is parallel computation of the particle weights. The tracker yields promising GPU/CPU speed-up. We demonstrate that the GPU implementation of the algorithm that runs with 256 particles is about 30 times faster than the CP...

متن کامل

Improvement and parallelization of Snort network intrusion detection mechanism using graphics processing unit

Nowadays, Network Intrusion Detection Systems (NIDS) are widely used to provide full security on computer networks. IDS are categorized into two primary types, including signature-based systems and anomaly-based systems. The former is more commonly used than the latter due to its lower error rate. The core of a signature-based IDS is the pattern matching. This process is inherently a computatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing Systems

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2012